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Abstract-The method of stress variation, previously developed for the optimal design of axisymmetric
sandwich plates obeying the Tresca criterion for a single loading condition[1-31, is extended to multiple
loading conditions. The method consists of a systematic reduction in the design parameter until the optimum
is reached. For the class of loadings treated in this paper, it is shown that repeated application of only a single
stress variation is necessary to produce the optimum design for a simply supported plate. The method is such
that it can easily be adapted to automatic computation, and the computer time required is simply proportional
to the number of separate loads to be considered. An example of a simply supported plate for three separate
loads is presented.

I. INTRODUCTION

The problem of designing minimum weight plastic structures that must carry different loads at
different times (multiple loading) has been receiving increasing attention in recent years. Beam
design for multiple loading conditions has been treated analytically by Mayeda and Prager[4] and
Nagtegaal[5]; for moving loads (infinitely many different loads) by Gross and Prager [6] and Save
and Prager[7].

In his treatment of sandwich plates, Shield [8], using the upper bound theorem of limit
analysis, showed that a sufficient condition for optimality is

n

LDi =Mo,
i=1

(1.1)

where Di is the energy dissipation of the plate under the load Ph n is the total number of different
loads and Mo is the yield moment of the minimum weight plate. Equation (1.1) has been
generalized to the case where n = 00 by Save and Shield [9], and a solution was presented for a
certain class of moving loads on a simply supported plate.

Equation (1.1), together with the usual field equations for limit analysis, determines the
optimal design as well as the optimal stresses and collapse mechanisms associated with each load
Pi. When Tresca yield condition is adopted, the procedure generally entails the assumption of a
certain collapse mechanism for each load condition Pi, which is then tested by (1.1) for kinematic
admissibilityt and by the equilibrium requirements for statical admissibility. When the collapse
mechanisms for each load are particularly simple, the foregoing procedure is rather efficient;
unfortunately however, the appropriate collapse mechanisms are often not of a simple nature, and
the problem of assuming the correct collapse mechanism for each load Pi becomes a formidable
task.

The purpose of this paper is to present an alternative procedure which avoids the necessity of
assuming the correct collapse mechanisms since the procedure is based on statics alone. The
method-the technique of stress variation-has previously proven itself sufficiently powerful to
determine the minimal designs in all cases of full or annular axisymmetric sandwich plates for
single uni-directional loads and any combination of edge supports [l-3]. The technique, as
developed in this paper, does not divorce itself from (1.1); rather it complements the optimality
criterion (1.1) by a logical and systematical development of designs whose optimality may then be
tested against (1.1).

tFor example, if n =2, the assumption that the stresses corresponding to one load are at a corner of the Tresca condition,
and those for the other load on a side yield three equations for the four principal curvature rates. The fourth equation is
provided by (1.1). If the resulting solution yields curvature rates compatible with flow law, the assumed collapse mechanism
is said to be kinematically admissible.

135



136 ROBERT REISS

2. STATICAL FORMULATION

Consider an axisymmetric sandwich plate with prescribed kinematic support conditions. The
fact sheets, separated by a core of constant depth, have a common thickness which depends on
the radial coordinate r, and are assumed to fail in accordance with the Tresca yield criterion. The
bending moments M/, Me

i and shear force Ti associated with the load Pi are said to be admissible
whenever they meet the conditions of equilibrium

d . .
dr (rM:) - Me' = rTi ,

(i=l, ... ,n) (2.1)

and statical boundary conditions. For each set of admissible stresses (M/, Me
i

; T;) define the
function MO

i by

(i=I, ... ,n). (2.2)

Having adopted the Tresca criterion (Fig. 1), it follows from (2.2) that the plate will be at or below
collapse if

(i=I, ... ,n). (2,3)

Since the face sheet thickness t is proportional to the yield moment Mo, it suffices to treat Mo
as the design variable. With the definition of the class of safe designs,

Mo(r) == max Moi(r)
i

(2.4)

and homogeneity of the face sheets, minimizing the weight becomes equivalent to minimizing the
moment volume I, where

1=rrMo(r) dr (2.5)

over the class of admissible stresses, and where a and b &fe, respectively, the radii at the inner
(a = 0 for the full plate) and outer edges of the plate. Equation (1.1) is a necessary and sufficient
condition for I to be an absolute minimum; the proof is found in the appendix.

3. TECHNIQUE OF STRESS VARIATION

Suppose that the plate has k circles of support at the radii djU = 1, ... , k). Furthermore,
denote the reaction at the support ~, when the load Pi is applied, by R/. Then according to (2.1),
the shear force must be given by

(3.1)

--,=C'f---+--~I::-F -Mr

o

Fig. 1. Tresca yield criterion.
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where H(r - dj) is the Heaviside operator with a source at r = dj. The k reactions
R/U =1, ... , k) are related by only one force equation of equilibrium for each i. This equation
may be written in the form

(3.2)

where fJi is a known constant.
Now let (M/, Me

i; T;) be a set of admissible stresses corresponding to the load Pi. According to
(2.1), (3.1) and (3.2), any other set of stresses (M/ +AM/, Me

i +AMe
i

; ~ +A~) will also be
admissible if

d . . .
dr(rAM:) = AMe' +rA~,

k

rA~= 2: p/djH(r - dj),
j-I

k

0=2: p/dio
j=l

(3.3)

where p/ are arbitrary constants. The functions (AM/, AMe
i

; A~) are called the stress variation;
the stress variation is said to be admissible whenever it satisfies (3.3).

The stress variation technique consists in first choosing an initial admissible stress field and a
corresponding design Mochosen in accordance with (2.2) and (2.4). The piecewise linearity of the
Trescacriterion is exploited by a judicious choice of an admissible stress variation which, if
sufficiently small, will render the change in moment volume independent of the initial admissible
stresses. If the moment volume variation is negative, the process is repeated anew, with the
resulting admi&sible stress taken as the new admissible stress. The design finally obtained by
repeating the process until there is no further reduction in moment volume is then tested by (1.1)
for absolute optimality.

All the results of the present study are obtained by using a single stress variation, namely

AM/ =AMe
i =0

AMe
i

= €i }
AM,i = €i (r - d*)/ r
AM/ = AMe

i =-€iE/(d* - E)
AT=O

d* < r $, b

d* - E $, r $, d*

a$, r < d*-E
a$, r $, b.

(3.4)

The effect of the variation (3.4) is depicted to Figs. 2, where the solid lines represent typical
admissible moments (M/, Mel) and the dashed lines show the resulting admissible moments after
application of the variation (3.4). In Fig. 2a it is assumed that €I > 0, while in Fig. 2b, €i < O. Thus
the variation (3.4) is characterized by an isotropic (AM/ =AMe

l
) constant variation in the region

a$, r < d* - E, and a pulse variation (AMe
i = constant) in the region d* - E $, r $, d*. The

stresses are left unchanged in the outer region d* < r::S:; b.
To be specific, consider the simply supported full plate with radius r = b. If all the loadings

Pi(i = 1, ... , n) are downward, then the statically determinate shear force Ti will be
non-positive. A convenient initial admissible stress field is the isotropic field

M Mi

~-~--- "i ---__ I I

Mr --~
--"':'::":::-::-_ .... :r:..

(i = 1, ... , n). (3.5)

a d* b a d* b

Fig. 2. Stress variatiOlI. (aH, >0; (bH. < O.
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For the case of three loads, each of which influence the design, assume the initial stress (3.5) is of
the form sketched on Fig. 3a. According to (2.4) and Fig. 3a, the initial design is determined by

M o ={~:~
M/

O:so; r :so; rl
r1 :so; r :so; r2
r2:SO; r :so; b.

(3.6)

Now apply the stress variation (3.4) where d* satisfies rz:so; d*:so; b but is otherwise arbitrary, and
where ~l = M/(d*) - M/ (d*) 2: 0 and E is an infinitesimal quantity. The variation clearly raises
the Me

i diagram to be coincident with the yield moment on the infinitesimal interval
d* - E :so; r:so; d*, but it maintains isotropy in the region r < d* - E by lowering both Mel and M.i

by an equal amount. The new admissible stresses are shown in Fig. 3b. Note that all the stress
states, both before and after the variation, lie either on side AB or at corner A of the Tresca
condition (Fig. 1). Consequently the new design is still determined by (3.6) where the Me

i are now
the moments after application of the variation. The moment volume variation may now be easily
calculated in terms of the stress variation (3.4), viz.

(3.7)

where terms of order E
Z have been neglected. By successively chossing d* = b, b - E, b - 2E, ••• ,

and repeatedly applying variation (3.4) until, say, r = Cz where Mrz(cz) = Mr\cz), the moment
volume will be successively reduced, provided that in the process Mr

i (i = 1, 2) remain
non-negative. It is assumed that this is the case. A typical sketch of the stresses thus obtained is
shown in Fig. 4. Since in the remainder of the plate to be designed, i.e. O:so; r :so; Cz, all of the stress
states are isotropic, the process of reducing the volume may now be continued exactly as before
where b is now replaced by Cz and the superscripts 2 and 3 are interchanged. It is evident that the
moment diagram depicted in Fig. 5 will be ultimately obtained. It may happen that the critical
radius C1 does not occur; then the loading PI does not effect the final design. Similarly if Cz does
not exist, the final design is independent of pz.

It is evident that the foregoing technique can be just as easily applied for arbitrary n loads and
q critical radii. The procedure was illustrated for n = 3 and q = 2 merely to facilitate clarity of
Figs. 3-5. If nand q are considered to be arbitrary, it is clear that the final design must obey the
following two rules:

Rule I-Between any two consecutive critical radii, say Cm and Cm +1, the stress state will be at
A (Fig. 1) for exactly one of the loadings; for each of the remaining loads, the stress state will
either be AB or below yield.

Rule 2-1f the stress state is below yield for a given load and over the subdomain
Cm :so; r :so; Cm +l, the same stress state applies for that load everywhere in the region 0:5 r :so; Cm +l.

It follows from Rules I and 2 that if, for a given load, the stress state A does not apply
anywhere, the final design will be independent of that load. It should again be noted that a design
satisfying both rules is not always possible since it was tacitly assumed that during the process of
varying the stresses none of the radial bending moments became negative. Assuming that the
technique does produce a design satisfying both rules, it is not difficult to show that the design
thus obtained satisfies (1.1) and therefore is indeed the absolute optimum; the proof is found in
the appendix.

M

-Me
--- Mr

M

Fig. 3. Initial (a) and varied stress (b).

-Me
--- Mr

b
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-Me
--- Mr

b

M

C1

-Me
--- Mr

Fig.4. Intermediate design. Fig. 5. Optimum design for three loads.

4. EXAMPLE

Consider a simply supported plate which is to carry separately each of three downward loads.
Since the shear is statically determinate, the loads are completely specified by the three
non-positive shear forces TI , T2and T3. Assuming all three shears affect the optimum design and
that the minimal moments are of the form specified by Fig. 5, (2.1) may be integrated to yield

LTl(~) d~ +1:1

T2(~) d~ +f' TM) d~

M/ = ,-I r HTM) - T2(~)J d~ + iT TM) d~+ r' TM) d~Jb C2 Jb
1'-1LHT1(~)-T3(g)Jdg+LTM)dg

(4.1)

M 2=fL T2(~)d~+ f2 TM)d~
T 1,-1L~[Ti~)-TM)ldg+LTM)d~

where the critical radii are the largest solution to

(4.2)

In the region C2 S r s b, it is clear that

Substitution of the appropriate expressions from (4.1) into (4.3) yields

and

Similarly, in the region CI S r S C2, the shear forces satisfy

(4.3)

(4.4)



140

while for 0:5 r:5 C\,
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f [T2(g) TM)] d~ ~ 0,

J: HTz(g) - TM)) d~ ~ 0,

(4.5)

(4.6)

The necessary and sufficients conditions to insure a solution of the type being considered are: (a)
there exist solutions C\, C2 to (4.2) such that C2> c\ > 0; (b) M/(r) ~ 0 for C\:$ r :$ b; (c)
inequalities (4.4), (4.5) and (4.6) are satisfied.

Now consider the specific shears representing a concentrated force at the center, and two ring
loads at the radii b13 and 2b13. Thus the shear forces become

rTI = -FI ,

rT2 = -F2H(r - bI3),

rT3 -F3H(r-2bI3).

It may easily be observed that if c\ and C2 exist, then a necessary and sufficient condition for
satisfaction of (4.4), (4.5) and (4.6) is

Substitution of (4.7) into (4.2) shows that

(4.7)

and (4.8)

It may easily be shown that c\ :5 b 13 and that C2:5 2b /3. The conditions that c\ ~ 0 and C2 ~ b13
yield the inequalities

(4.9)

It remains to establish that M/ ~ 0 for C\ :5 r :5 b. First, consider the region C2:$ r:$ b, where

(4.10)

Since T3 is negative for r > 2b 13 and zero for r < 2b13, it follows that M/ need only be evaluated
at the radii 2bl3 and C2. Performing the calculations and using (4.8) and (4.9), it follows that

and (4.11)

tIn deriving the expression for C2, it was assumed that Cz ;;" b/3. If it was assumed that Cz s b/3, the vanishing of both T2
and T3 for 0s r s b/3 would show that Cz = b/3 is also a solution to (4.2). Since the largest solution C2 is desired, it follows
that cz ;;" b /3 is correct.
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3rM/lc2 = b~:[-Fz+F I +(3Fz- F3) In 1,5]

;;:: 0·216bF3(F2 - Ft)/Fz> O.
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Similarly, for Ct S r s C2, the radii r = CI and r = b/3 are the radii at which M/ must be
evaluated. It is not difficult to show that

and

M/lb/3 = 2(FI - F2) +Fzln (3cz/b) +F3ln 1·5

;;::0·144Fz >0 (4.12)

It follows from (4.9) that if 2Fz s F 3 s 3Ft , then a non-negative solution Ct still exists but Cz

does not exist. Moreover, if F 3 s 2F2 and 2F2 ;;:: 3FI, then cz exists but Ct does not. This suggests
that the loading Fz does not affect the design in the former case, while F I does not affect the
design in the latter case. That this is the proper interpretation shall now be established.

The optimum design, which is unaffected by Fz, is obtained by deleting M/ and Me
2 in Fig. 5.

Therefore the design Mo is given by

Mo=M/=Mel

(4.13)

OsM/sMo,

and the stresses are depicted in Fig. 6. An analysis similar to the previous case yields:

(4.14)

from which

(4.15)

is obtained. The condition Ct > 0 implies that

(4.16)

With (4.15) and (4.16), it is a straightforward procedure to verify the inequalities in (4.13).
Next, the existence of a statically admissible M/, M/ nowhere violating the yield condition

must be established. Choose

M

-MS
--- Mr

"
" ,,

'---- ....-
CI 2b/3

Fig. 6. Optimum design for FI and F3 •
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M/=M/ b/3 s r s b

Osrsb/3t.
(4.17)

From equilibrium and (4.17), it follows that

b/3 s r s b

Os r s b/3.

(4.18)

Observing that Me
2 =Me

3 for r;::: b/3, it follows that

(4.19)

where the inequality is a consequence of the assumption that the stresses corresponding to F2 are
at or below yield. Evaluation of the integral in (4.19) yields:

(4.20)

That M,2 is non-negative for b /3 s r s b may be established by evaluating M,2 at b /3 and 2b /3.
Performing the calculations shows that

(4.21)

where the inequality signs in (4.21) follow from (4.7), (4.16) and (4.20).
Now M,2 is non-negative in the central region 0 S r s b13. It remains to show that M,2 is at or

below yield in that region. If c. > b/3, (4.13) and (4.19) are used to show that Mr' ;::: M/;::: M/ for
r s b/3. If c. < b /3, it suffices to show that Mo = M,3;::: M,2 for CI s r s b /3 and that
Mo = Mr' ;::: M: for r s Ct. Routine calculations show that

for
(4.22)

for

Now consider the case where c. does not exist, so that the design is assumed to be
independent of Fl. The form of the design is obtained by deleting the curves for M,I and Mel in
Fig. 5. Omitting details,

(4.23)

results from the condition C2;::: b13. Again, the admissibility of the stresses can be easily
established.

To establish the existence of Mr', Mel at or below yield, special care is needed to insure the
IM,II < 00 at the location of the centrally applied concentrated force. Consider

r*S rS b
(4.24)

Os r s r*,

tThis choice is a natural consequence of the method discussed in Section 3. Successive application of the stress variation
(3.6) eventually leads to the form (4.17). There is no value in further applying the variation to M;, Me' in the range 0 :5 r :5 b/3
since the minimum value of c, is b /3, Le. c, does not exist.



Stress variation applied to minimal design for multiple loading

where r* is defined by the greatest solution, other than b, to

Assuming r* < b /3, it can easily be shown that

r*Pzln (3cz/b) + r*Pdn 1·5 +P.(b - r*)-2pzb/3 = O.

The condition M/ 2: M/ for r*:5 r :5 b leads to

It remains to show that M/(r*) 2: PI. Now

M/(r*) - PI = Pzln (3cz/b) +P3 ln 1·5 - PI

b
= 3r*(2Pz- 3PI),

143

(4.25)

(4.26)

(4.27)

(4.28)

where (4.26) was used to establish the latter result in (4.28). Therefore PI does not affect the
design if

(4.29)

as originally anticipated. It should be pointed out that (4.29) was derived by assuming r* < b/3.
Recalling the effect of the stress variation of the previous section, it is obvious that r* increases
as PI decreases. Therefore the lower bound theorem of limit analysis shows that if r* > b /3, the
stresses corresponding to the load PI must still be at or below yield.

5. DISCUSSION

It has been shown that the statical method of stress variation can systematically lead to
designs which may be tested for optimality by (1.1). The method has been illustrated for a simply
supported plate for an arbitrary number of separate loads, each of which must be safely carried
by the plate. The single stress variation (3.4) is sufficient to obtain the optimum design provided
that in the process none of the radial bending moments become negative.

The essential feature of variation (3.4) is that is applicable whenever the statical boundary
conditions are Mr = 0 at the outer edge, and Mr unspecified at the inner edge. Therefore, all that
was developed specifically for the supported plate is equally applicable to annular plates either
clamped at r = a, or supported at r = b but with a rigid central boss constraining the inner edge
against rotation.

In most practical cases where either the number n of separate loadings is large or where the
shear forces are not of a very simple form, analytic solutions are not feasible. However, it is a
very simple matter to program the method for modern high speed computers. In contrast to linear
programming techniques [l0] where the coefficient matrix is proportional to n, in the present
method it is the computational time that is proportional to n. Additional time savings may be
achieved by discarding any stresses once it is determined that they cannot affect the final design.

Of course, for a great many cases this method will fail as one or more of the radial moments
becomes negative. This case has never been previously treated in the literature. In fact, the
examples of [8, 9] assume that the side AB and corner A alone determine the optimum. This
technique could be very easily extended to show that if M/ goes negative for some i, then
variation (3.4) is still applicable provided that now the constant ~I is set equal to Mo. Then the
stresses (Mr\ Msl

) will lie on side Be of the Tresca condition. However, much less trivial
difficulties develop if MS

I now goes negative. Moreover, as the minimal stresses increase in
complexity, the proof that the final design obtained, when it its most general form, satisfies (1.1)
becomes increasingly difficult. For this reason, work is in progress to refine the stress variation
technique so as to make it independent of (1.1). Results will be reported in the near future for
more general loads and for other kinematic support conditions.
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APPENDIX
Derivation of the optimality condition

Take the first variation of (2.5) and use (3.3) to obtain

(AI)

where B is a Lagrangian multiplier. Integration of the latter term of the first integral in (AI) by parts and the requirement that
8J vanish for all variations SM,' and SRi yields the Euler conditions for an extremal

and rb
ilMo

Jd; r ilM.' dr= B

(i = I, ... , n)

(i=I..... n).

(A2)

(A3)

Equation (A3) may also be expressed by

(i = I, ... ,n),(j= I, ... ,k-t). (A4)

The natural boundary conditions associated with (A2) and (A4) are

ilMo
rilM.'=O, (i=I•...• n) (A5)

at any edge for which M,' is not prescribed. Sufficiency of the extremal conditions follows from the convexity and
homogeneity of order one for the function Mo(M,', M.'Hllj.

It remains to derive (1.1) from (A2), (A4) and (A5). In (2.3), if the stresses are ordered so that

(A2) takes the form

Mo'{=Mo,
<Mo,

(i= I, ... ,p)
(i =p +I, ... , n),

(A6)

(i =I, ... •p)ilMo ilMo' d ( ilMo ilMo')
ilMo' ilM,' = dr rilMo' ilM.' •

ilMo ilMo
ilM,'=ilM.'=O, (i=p+I, ... ,n). (A7)

The derivatives i1MoJiJMo' are the components of the gradient to the hypersurface Mo= MJ.Mo" Mo', ...• M/) at the
comer Mo' = Mo

2 =. .. Mo'. The case p = 2 is illustrated in Fig. 7. Although the components i1MoJiJMo' of the gradient are
not unique. they are not totally arbitrary either. Since Mo is a homogeneous function of order one in the argument Mo'. it
follows that

and since Mo=Mo' =... Mo', that

~ .ilMo
Mo = £.J Mn' 'M i

i=1 U 0

p aMo
2:'M'=1.
i-I {I 0

(A8)

(A9)
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M~

--Mo---H,,",
'-- -'----.....L__ M~

Fig.7. Hypersurface for Mo(Mo').

According to the plastic potential flow law, the incipient curvature rates K:, K.' at plastic collapse satisfy
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K,' = A'aMo'/aM,'
K.' = A'aMo'/aM.',

(i=I, ... ,p) (AIO)

where A' are non-negative scalars. Substitution of (AI0) into (A7) results in

for which the solution is

d(I aMo)dT A' aMo' = 0, (i= I, ... ,p), (All)

aMo =A'
aMo' , (AI2)

where the non-essential positive constant of integration has been set equal to unity. The energy dissipation D, resulting from
the plastic response to the load p, is

With the use of (AIO) and (AI2) and Euler's theorem of homogeneous functions, (AI2) becomes

M ,aMo
D, = 0 aM

o
"

(A13)

(AI4)

Equation (A8) and (AI4) now easily result in (1.1).
Since (AIO) and (AI2) imply that K.' = aMolaMo', and recalling that rKo' = -dw'/dr where w' is the collapse velocity, (A4)

becomes merely the kinematic condition w(dj )= w(dJ+,) and (A5) becomes the kinematic boundary condition at any edge
constrained against rotation, i.e. where M, is not prescribed.

Proof of optimality for the rules
Here, it will be established that if the stress variation technique produces a design satisfying Rules I and 2, then that

design is optimal. Denote the q critical radii by CI(l = I, ... , q). For 0$ r $ C" one of the stresses is at point A, the
remainder below yield. Assuming M: = Me" = Mo, (1.1) becomes K: + Ke" = 1. Use of the compatibility conditions
d(l'Ke" )/dr = K: and the boundedness requirement at the origin yields K: = Ke" = 1/2> 0 which is compatible with flow law
requirements at point A.

The proof is completed by appealing to the principle of mathematical induction, i.e. assume that the solution is
kinematically admissible for Ca - I $ r $ Ca, from which admissibility for Ca $ r $ Ca+' must be shown. For definiteness,
assume Me' = M,' = Mo for the former region and Me' = M/ = Mo for the latter region. Then for Ca - I $ r $ Ca,

K/ =0
Ko' =A,/r

(i =2, ... , n) (AI5)

where A, are non-negative constants. Substitution of (AI5) and the isotropic condition Me' = M,' = Mo into (1.1) yields

K,'+Ke' = 1-L A.lr.
i=2

Furthermore, substitution of (A 16) into the compatibility condition for (K,', Ke') produces

r 2 Ke' =-21(r2
- C~_I)+ c~_,k'+ ~ A,(ca _,- r)

, -2

2 I I (2 2) 2 k2 ~ Ar K,. =2' r +ccr-t -Ca-t -cOI-16 i,

(AI6)

(AI7)

where e = Ke'(Ca -,) 2:0 according to the hypothesis.
Now assume that M/ =Me' =Mofor Ca $ r $ Ca +" where the remainder of the stresses lie on side AB. The equations,

analogous to (AI5) and (AI7), subject to continuity of Ko'(i = I, ... , n) at Ca are

K,'=O
K.'=A,/r>O (i=3, ... ,n) (AI8)
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Ko' = c,~r lKel(Ca»O
K,' =0 (AI9)

(A20)

Since d(rK/)1 dr = K,' and K,'( c.) > 0, both curvature rates will be non-negative and therefore admissible if K,' ~ O. But

(A21)

Since the assumed design is compatible with (1.1) for c. :s r:s C.+h it follows that it is also compatible with (1.1) for
o:s r :s; b; consequently it is optimal.


